All About Spatial Data

Find it, Manage it, Use it
Workshop Outline

• Define spatial data
• Spatial data formats
• Data Sources
• Metadata
• Evaluating Spatial Data
• Data Management
• Activities: define spatial data, find and open data, read metadata, interactive polls

Jennie Murack, MIT Libraries, January 2016
Why Spatial Data?

• It’s everywhere.
• It’s confusing.
• It’s not just a GIS thing.
What words or phrases do you associate with spatial data?
What is spatial data?

• Information about the locations and shapes of geographic features and the relationships between them, usually stored as coordinates and topology.

• Any data that can be mapped.

Examples of Spatial Data

• An Excel file with addresses
• A picture with coordinates
• A vector data layer (a line representing a river, polygons representing census tracts, etc.)
• An image of a map
Spatial Data Formats

• Vector:
 – Can usually be opened in a web map or GIS software with no additional processing.
 – Represent information using points, line, and polygons.
 – .shp/shapefile (saved as .zip for uploading), .gpx, .kml, kmz, .geojson, .osm, .bz2

• Tabular:
 – Will need to be “georeferenced” or “geocoded” to translate coordinates or addresses into vector shapes (points, lines, etc.).
 – Can be joined to vector data if there is a common ID.
 – .csv, .txt, .xls, .xlsx, .tab, .sql, .ods

• Raster/Image:
 – Pixelated data that can be added to a map, but cannot always be edited.
 – May need to be georeferenced.
 – Geotiff, .jpg (and other image formats)
Vector: Points, Lines and Polygons
Attribute Table
Shapefile

• A vector data storage format developed by ESRI.
• Shapefiles consist of several different files, with extensions such as .shp, .dbf, .prj, etc.
• They are usually downloaded as a .zip file and then need to be unzipped to be used in GIS software.
• Keep ALL the files together in order for them to work in GIS software.

Jennie Murack, MIT Libraries, January 2016
Raster: Pixels

http://www4.ncsu.edu/~hmitaso/gmslab/reports/CerlErosionTutorial/denix/Approach/DEM_modeling_erosion_at_multiple_sca.htm

Jennie Murack, MIT Libraries, January 2016
Tabular Data

Address	**City**	**State**	**ZIP Code**
1134 Massachusetts Ave | Cambridge | MA | 02138
290 Main St | Cambridge | MA | 02142
47 Mount Auburn St | Cambridge | MA | 02138
428 Massachusetts Ave | Cambridge | MA | 02139
314 3rd St | Cambridge | MA | 02142
675 W Kendall St | Cambridge | MA | 02142
746 Massachusetts Ave | Cambridge | MA | 02139
247 Cambridge St | Cambridge | MA | 02141
276 Broadway | Cambridge | MA | 02139
2370 Massachusetts Ave | Cambridge | MA | 02140
1687 Massachusetts Ave | Cambridge | MA | 02138
1722 Massachusetts Ave | Cambridge | MA | 02138

Geo_FIPS	**Total Population**	**Male**	**Female**
1001020100 | 1900 | 944 | 956
1001020200 | 2342 | 1157 | 1185
1001020300 | 3297 | 1451 | 1846
1001020400 | 4272 | 2056 | 2216
1001020500 | 10881 | 5202 | 5679
1001020600 | 3782 | 1769 | 2013
1001020700 | 2799 | 1140 | 1659
1001020801 | 3096 | 1475 | 1621
1001020802 | 10471 | 5283 | 5188
1001020900 | 5637 | 2908 | 2729

Latitude	**Longitude**
42.370882 | -71.114246
42.362318 | -71.086001
42.371406 | -71.116643
42.363327 | -71.100944
42.363039 | -71.08254
42.364681 | -71.082363
42.366312 | -71.105351
42.371092 | -71.080076
42.367804 | -71.097311
Software for Viewing Spatial Data

• GIS Software (ArcGIS, QGIS)
• Online Mapping Software (ArcGIS Online, CartoDB, Mapbox)
• Statistical/Data Visualization Software (Tableau, R, MatLab)
• Programming Languages (Python, Javascript (D3, leaflet), R, MatLab)
Is this spatial data?

Yes, these are lines representing roads in the Boston area (vector data)
Is this spatial data?

Yes, this is a scanned, historic map of the Boston area (raster data)
Is this spatial data?

It could be. See the next slide.
Is this spatial data?

Yes. When an image is georeferenced to a map or has embedded coordinate data, it is spatial data. (raster data)
Is this spatial data?

No, there is no information you could use to map this data. If the location of each business were listed, it would be tabular spatial data.
Is this spatial data?

Yes. It doesn’t use the same coordinate system as data that is plotted on the earth, but you could map items on this brain. This scan is raster data since it uses pixels.
Is this spatial data?

No, not in its current form. However, you could analyze this text and put the spatial locations in table to map them, or plot them manually on a map to transform this data to something spatial.
GET YOUR DATA
Data Sources

• MIT sources
 – GeoWeb: use any web browser (includes data downloads as well as DVDs and Maps in the library)

• Internet
 – http://libguides.mit.edu/gis (Links to data sources)
 – Google search
 – OpenStreetMap.org

• Create your own
 – GPS, digitizing, etc.

Not finding what you want? GIS data purchase requests? Contact GIS Help (gishelp@mit.edu).
GeoWeb – search 2000+ layers of MIT hosted GIS data and data from other schools.

Jennie Murack, MIT Libraries, January 2016
GIS Services links to data: libguides.mit.edu/gis

Jennie Murack, MIT Libraries, January 2016
Open data! Anyone can contribute and download.

Jennie Murack, MIT Libraries, January 2016
OpenStreeMap

• Data cannot be downloaded in a shapefile format from OpenStreetMap, but you can do this from other websites.

• Use the Trimble Data Marketplace: http://data.trimble.com/market/index.html

• See this video for instructions: https://youtu.be/K8nUs-Hf4Fc
Search Tips

• Use “GIS”, “data”, or “map” as some of your search terms.
 – “wind data gis”, “US census gis”

• If you are looking for data from a specific location, search for a town/county/state/country GIS organization and contact them.
 – “Cambridge MA GIS department”

• Many cities have open data portals that contain GIS and other data.
 – “Boston open data”

• When searching for foreign data, search in the language native to that country.

• Look for universities near your area of interest and contact researchers. They may be willing to share their data!
ACTIVITY: FIND SPATIAL DATA
KEEP THE SOURCE/WEBSITE FOR YOUR DATA OPEN.
ACTIVITY: OPEN THE DATA IN CARTODB

Connecting to a dataset:
http://docs.cartodb.com/cartodb-editor/datasets/#connect-dataset

Geocoding tabular data:
http://docs.cartodb.com/tutorials/how_to_georeference/
ACTIVITY: OPEN THE DATA IN QGIS

Add data layers:
https://docs.qgis.org/2.2/en/docs/user_manual/working_with_vector/supported_data.html

Add tabular data with XY coordinates:

Geocode addresses:
http://www.gislounge.com/how-to-geocode-addresses-using-qgis/
DID YOU NOTICE ANYTHING UNEXPECTED ABOUT YOUR DATA?
EVALUATING SPATIAL DATA
Metadata

• Information about the data layer
• Read the metadata to determine who created the data, when it was created, what the codes in the table mean, if there are constraints on how it can be used, etc.
• You can find metadata:
 – Downloaded with your data layers
 – On the website where you got your data
 – Sometimes you may need to contact the data provider to get metadata
• Metadata is most commonly in html/xml format, text files, or in a table format, such as excel or csv.
Metadata Standards

• **FGDC** (Federal Geographic Data Committee)
• **ISO** (International Organization for Standardization)
• List how the data should be described.
• Include standard headings/tags for each element about the data.
Metadata

In GeoWeb, expand each category to read the metadata.

- Identification Information
- Metadata Reference Information
- Spatial Data Organization Information
- Spatial Reference Information
- Entity and Attribute Information
- Distribution Information

World (Countries, 2005)
Metadata

Entity and Attribute Information

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Attribute Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDE_DATA_INT_A1CNTRY_2005</td>
<td>ObjectID
 Attribute Definition Internal feature number.
 Attribute Definition Source ESRI</td>
</tr>
<tr>
<td></td>
<td>FIPS_CNTRY
 Attribute Definition The FIPS code (two-letter) for the country.
 Attribute Definition Source Department of Commerce, National Institute of Standards and Technology</td>
</tr>
<tr>
<td></td>
<td>GMI_CNTRY
 Attribute Definition The country code (three-letter) for the country from Global Mapping International.
 Attribute Definition Source Global Mapping International</td>
</tr>
<tr>
<td></td>
<td>ISO_2DIGIT
 Attribute Definition The country code (two-letter) for the country from the International Organization for Standardization.
 Attribute Definition Source International Organization for Standardization</td>
</tr>
<tr>
<td></td>
<td>ISO_3DIGIT</td>
</tr>
</tbody>
</table>
Data Quality

• Lineage
• Accuracy (spatial, temporal, thematic/attribute)
• Consistency
• Completeness

Jennie Murack, MIT Libraries, January 2016
Lineage

Where did the data come from? How as it derived?

MassGIS Anadromous Fish

Overview

The Department of Fish and Game (DFG) GIS Program working in conjunction with biologists from the MA Division of Marine Fisheries and the MA Division of Fisheries and Wildlife compiled and automated a point coverage of anadromous fish data. The data include all known coastal anadromous fish runs spawning habitat and runs for three

Methodology

During interviews with Division biologists the data points were compiled onto 1:25000 basemaps using the best available hydrographic data. "Heads-up" digitizing was used to automate the data points. Paper forms were completed with information regarding locations of barriers, fishways, beginning and ending of runs and spawning habitat. The information from these forms was used to populate the associated look up tables (RIV, RUN, BAR).
Accuracy

• Is the data in proper place and time? Are the attributes accurate?

• If the data appear to be the correct shape, but are showing up in an unexpected location on your map, check the map projection.
Consistency

• The absence of contradictions.
• Data follow topological rules (polygons to do overlap, lines intersect at nodes, etc.)
• Appropriate attributes.

<table>
<thead>
<tr>
<th>ID</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alabama</td>
</tr>
<tr>
<td>2</td>
<td>Connecticut</td>
</tr>
<tr>
<td>3</td>
<td>Massachusetts</td>
</tr>
<tr>
<td>4</td>
<td>California</td>
</tr>
<tr>
<td>5</td>
<td>Middlesex</td>
</tr>
</tbody>
</table>

Jennie Murack, MIT Libraries, January 2016
Completeness

• Does the data include all relevant features and attributes?

• Consider the time period.

If this data layer was called “New England bicycle trails” it would not be complete. It was last updated in 2002 and is complete for that time period in Massachusetts.
Is this the right data for your project?

• Consider **scale**, type of features, how data are represented, etc.
ACTIVITY: FIND THE METADATA FOR YOUR DATA
DATA MANAGEMENT TIPS

Jennie Murack, MIT Libraries, January 2016
Data Management Tips

GIS projects tend to generate many files, which are generally large in size. For file naming:

- Use file names that represent the file (default names like Export_Output are not helpful if you need to come back to your project later).
- Some software programs and tools may have file name constraints (e.g. an eight character limit without spaces). Watch out for this with ESRI ArcToolbox.
- Backup Your Data!
Data Management Tips

Keep detailed notes about:

• Data sources
• Licensing constraints
• Data processing steps
• What is stored where
 – The GIS project maintains links to the individual data files (the data is not embedded in the map document itself)
 – GIS formats, like shapefile (SHP), have many files that are linked together and must stay together in order to function

• Descriptions of the files you create and use (ArcCatalog has built-in tools for creating and editing metadata)